I've implemented the integral of wt in pearce. This notebook verifies it works as I believe it should.
In [1]:
from pearce.mocks import cat_dict
import numpy as np
from os import path
from astropy.io import fits
In [2]:
import matplotlib
#matplotlib.use('Agg')
from matplotlib import pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()
Load up the tptY3 buzzard mocks.
In [3]:
fname = '/u/ki/jderose/public_html/bcc/measurement/y3/3x2pt/buzzard/flock/buzzard-2/tpt_Y3_v0.fits'
hdulist = fits.open(fname)
In [4]:
hdulist.info()
In [5]:
hdulist[0].header
Out[5]:
In [6]:
z_bins = np.array([0.15, 0.3, 0.45, 0.6, 0.75, 0.9])
zbin=1
In [7]:
a = 0.81120
z = 1.0/a - 1.0
Load up a snapshot at a redshift near the center of this bin.
In [8]:
print z
This code load a particular snapshot and and a particular HOD model. In this case, 'redMagic' is the Zheng07 HOD with the f_c variable added in.
In [9]:
cosmo_params = {'simname':'chinchilla', 'Lbox':400.0, 'scale_factors':[a]}
cat = cat_dict[cosmo_params['simname']](**cosmo_params)#construct the specified catalog!
cat.load_catalog(a, particles = True)
In [10]:
cat.load_model(a, 'redMagic')
In [11]:
from astropy.cosmology import FlatLambdaCDM
cosmo = FlatLambdaCDM(H0 = 100, Om0 = 0.3, Tcmb0=2.725)
In [12]:
#cat.cosmology = cosmo # set to the "standard" one
#cat.h = cat.cosmology.h
Take the zspec in our selected zbin to calculate the dN/dz distribution. The below cell calculate the redshift distribution prefactor
$$ W = \frac{2}{c}\int_0^{\infty} dz H(z) \left(\frac{dN}{dz} \right)^2 $$
In [13]:
hdulist[8].columns
Out[13]:
In [14]:
nz_zspec = hdulist[8]
zbin_edges = [row[0] for row in nz_zspec.data]
zbin_edges.append(nz_zspec.data[-1][2]) # add the last bin edge
zbin_edges = np.array(zbin_edges)
Nz = np.array([row[2+zbin] for row in nz_zspec.data])
N_total = np.sum(Nz)
dNdz = Nz/N_total
In [15]:
W = cat.compute_wt_prefactor(zbin_edges, dNdz)
In [16]:
print W
If we happened to choose a model with assembly bias, set it to 0. Leave all parameters as their defaults, for now.
In [74]:
params = cat.model.param_dict.copy()
params['mean_occupation_centrals_assembias_param1'] = 0
params['mean_occupation_satellites_assembias_param1'] = 0
params['logMmin'] = 12.0
params['sigma_logM'] = 0.2
params['f_c'] = 0.19
params['alpha'] = 1.21
params['logM1'] = 13.71
params['logM0'] = 11.39
print params
In [75]:
cat.populate(params)
In [76]:
nd_cat = cat.calc_analytic_nd()
print nd_cat
In [77]:
cat.cosmology
Out[77]:
In [78]:
area = 4635.4 #sq degrees
full_sky = 41253 #sq degrees
volIn, volOut = cat.cosmology.comoving_volume(z_bins[zbin-1]), cat.cosmology.comoving_volume(z_bins[zbin])
fullsky_volume = volOut-volIn
survey_volume = fullsky_volume*area/full_sky
nd_mock = N_total/survey_volume
print nd_mock
In [79]:
volIn.value, volOut
Out[79]:
In [80]:
correct_nds = np.array([1e-3, 1e-3, 1e-3, 4e-4, 1e-4])
In [81]:
%%bash
ls ~jderose/public_html/bcc/catalog/redmagic/y3/buzzard/flock/buzzard-0/a/buzzard-0_1.6_y3_run_redmapper_v6.4.20_redmagic_*vlim_area.fit
In [82]:
vol_fname = '/u/ki/jderose/public_html/bcc/catalog/redmagic/y3/buzzard/flock/buzzard-0/a/buzzard-0_1.6_y3_run_redmapper_v6.4.20_redmagic_highlum_1.0_vlim_area.fit'
vol_hdulist = fits.open(vol_fname)
In [83]:
nd_mock.value/nd_cat
Out[83]:
In [84]:
#compute the mean mass
mf = cat.calc_mf()
HOD = cat.calc_hod()
mass_bin_range = (9,16)
mass_bin_size = 0.01
mass_bins = np.logspace(mass_bin_range[0], mass_bin_range[1], int( (mass_bin_range[1]-mass_bin_range[0])/mass_bin_size )+1 )
mean_host_mass = np.sum([mass_bin_size*mf[i]*HOD[i]*(mass_bins[i]+mass_bins[i+1])/2 for i in xrange(len(mass_bins)-1)])/\
np.sum([mass_bin_size*mf[i]*HOD[i] for i in xrange(len(mass_bins)-1)])
print mean_host_mass
In [85]:
theta_bins = np.logspace(np.log10(2.5), np.log10(2000), 25)/60 #binning used in buzzard mocks
tpoints = (theta_bins[1:]+theta_bins[:-1])/2
In [86]:
r_bins = np.logspace(-0.5, 1.7, 16)/cat.h
rpoints = (r_bins[1:]+r_bins[:-1])/2
In [87]:
r_bins
Out[87]:
In [88]:
wt = cat.calc_wt(theta_bins, r_bins, W)
In [89]:
wt
Out[89]:
In [90]:
r_bins
Out[90]:
Use my code's wrapper for halotools' xi calculator. Full source code can be found here.
In [91]:
xi = cat.calc_xi(r_bins, do_jackknife=False)
Interpolate with a Gaussian process. May want to do something else "at scale", but this is quick for now.
In [92]:
import george
from george.kernels import ExpSquaredKernel
kernel = ExpSquaredKernel(0.05)
gp = george.GP(kernel)
gp.compute(np.log10(rpoints))
In [93]:
print xi
In [94]:
xi[xi<=0] = 1e-2 #ack
In [95]:
from scipy.stats import linregress
m,b,_,_,_ = linregress(np.log10(rpoints), np.log10(xi))
In [96]:
plt.plot(rpoints, (2.22353827e+03)*(rpoints**(-1.88359)))
#plt.plot(rpoints, b2*(rpoints**m2))
plt.scatter(rpoints, xi)
plt.loglog();
In [97]:
plt.plot(np.log10(rpoints), b+(np.log10(rpoints)*m))
#plt.plot(np.log10(rpoints), b2+(np.log10(rpoints)*m2))
#plt.plot(np.log10(rpoints), 90+(np.log10(rpoints)*(-2)))
plt.scatter(np.log10(rpoints), np.log10(xi) )
#plt.loglog();
Out[97]:
In [98]:
print m,b
In [99]:
rpoints_dense = np.logspace(-0.5, 2, 500)
plt.scatter(rpoints, xi)
plt.plot(rpoints_dense, np.power(10, gp.predict(np.log10(xi), np.log10(rpoints_dense))[0]))
plt.loglog();
This plot looks bad on large scales. I will need to implement a linear bias model for larger scales; however I believe this is not the cause of this issue. The overly large correlation function at large scales if anything should increase w(theta).
This plot shows the regimes of concern. The black lines show the value of r for u=0 in the below integral for each theta bin. The red lines show the maximum value of r for the integral I'm performing.
Perform the below integral in each theta bin:
$$ w(\theta) = W \int_0^\infty du \xi \left(r = \sqrt{u^2 + \bar{x}^2(z)\theta^2} \right) $$Where $\bar{x}$ is the median comoving distance to z.
In [100]:
print zbin
In [101]:
#a subset of the data from above. I've verified it's correct, but we can look again.
zbin = 1
wt_redmagic = np.loadtxt('/u/ki/swmclau2/Git/pearce/bin/mcmc/buzzard2_wt_%d%d.npy'%(zbin,zbin))
The below plot shows the problem. There appears to be a constant multiplicative offset between the redmagic calculation and the one we just performed. The plot below it shows their ratio. It is near-constant, but there is some small radial trend. Whether or not it is significant is tough to say.
In [102]:
from scipy.special import gamma
def wt_analytic(m,b,t,x):
return W*b*np.sqrt(np.pi)*(t*x)**(1 + m)*(gamma(-(1./2) - m/2.)/(2*gamma(-(m/2.))) )
In [103]:
theta_bins_rm = np.logspace(np.log10(2.5), np.log10(250), 21)/60 #binning used in buzzard mocks
tpoints_rm = (theta_bins_rm[1:]+theta_bins_rm[:-1])/2
In [104]:
plt.plot(tpoints, wt, label = 'My Calculation')
plt.plot(tpoints_rm, wt_redmagic, label = 'Buzzard Mock')
#plt.plot(tpoints_rm, W.to("1/Mpc").value*mathematica_calc, label = 'Mathematica Calc')
#plt.plot(tpoints, wt_analytic(m,10**b, np.radians(tpoints), x),label = 'Mathematica Calc' )
plt.ylabel(r'$w(\theta)$')
plt.xlabel(r'$\theta \mathrm{[degrees]}$')
plt.loglog();
plt.legend(loc='best')
Out[104]:
In [48]:
print bias2
In [ ]:
plt.plot(rpoints, xi/xi_mm)
plt.plot(rpoints, cat.calc_bias(r_bins))
plt.plot(rpoints, bias2*np.ones_like(rpoints))
plt.xscale('log')
In [ ]:
plt.plot(rpoints, xi, label = 'Galaxy')
plt.plot(rpoints, xi_mm, label = 'Matter')
plt.loglog()
plt.legend(loc ='best')
In [ ]:
from astropy import units
from scipy.interpolate import interp1d
In [ ]:
cat.cosmology
In [ ]:
import pyccl as ccl
ob = 0.047
om = cat.cosmology.Om0
oc = om - ob
sigma_8 = 0.82
h = cat.h
ns = 0.96
cosmo = ccl.Cosmology(Omega_c =oc, Omega_b=ob, h=h, n_s=ns, sigma8=sigma_8 )
In [ ]:
big_rbins = np.logspace(1, 2.1, 21)
big_rbc = (big_rbins[1:] + big_rbins[:-1])/2.0
xi_mm2 = ccl.correlation_3d(cosmo, cat.a, big_rbc)
In [ ]:
plt.plot(rpoints, xi)
plt.plot(big_rbc, xi_mm2)
plt.vlines(30, 1e-3, 1e2)
plt.loglog()
In [ ]:
plt.plot(np.logspace(0,1.5, 20), xi_interp(np.log10(np.logspace(0,1.5,20))))
plt.plot(np.logspace(1.2,2.0, 20), xi_mm_interp(np.log10(np.logspace(1.2,2.0,20))))
plt.vlines(30, -3, 2)
#plt.loglog()
plt.xscale('log')
In [ ]:
xi_interp = interp1d(np.log10(rpoints), np.log10(xi))
xi_mm_interp = interp1d(np.log10(big_rbc), np.log10(xi_mm2))
print xi_interp(np.log10(30))/xi_mm_interp(np.log10(30))
In [ ]:
#xi = cat.calc_xi(r_bins)
xi_interp = interp1d(np.log10(rpoints), np.log10(xi))
xi_mm_interp = interp1d(np.log10(big_rbc), np.log10(xi_mm2))
#xi_mm = cat._xi_mm#self.calc_xi_mm(r_bins,n_cores='all')
#if precomputed, will just load the cache
bias2 = np.mean(xi[-3:]/xi_mm[-3:]) #estimate the large scale bias from the box
#print bias2
#note i don't use the bias builtin cuz i've already computed xi_gg.
#Assume xi_mm doesn't go below 0; will fail catastrophically if it does. but if it does we can't hack around it.
#idx = -3
#m,b,_,_,_ =linregress(np.log10(rpoints), np.log10(xi))
#large_scale_model = lambda r: bias2*(10**b)*(r**m) #should i use np.power?
large_scale_model = lambda r: (10**b)*(r**m) #should i use np.power?
tpoints = (theta_bins[1:] + theta_bins[:-1])/2.0
wt_large = np.zeros_like(tpoints)
wt_small = np.zeros_like(tpoints)
x = cat.cosmology.comoving_distance(cat.z)*cat.a/cat.h
assert tpoints[0]*x.to("Mpc").value/cat.h >= r_bins[0]
#ubins = np.linspace(10**-6, 10**4.0, 1001)
ubins = np.logspace(-6, 3.0, 1001)
ubc = (ubins[1:]+ubins[:-1])/2.0
def integrate_xi(bin_no):#, w_theta, bin_no, ubc, ubins)
int_xi = 0
t_med = np.radians(tpoints[bin_no])
for ubin_no, _u in enumerate(ubc):
_du = ubins[ubin_no+1]-ubins[ubin_no]
u = _u*units.Mpc*cat.a/cat.h
du = _du*units.Mpc*cat.a/cat.h
r = np.sqrt((u**2+(x*t_med)**2))#*cat.h#not sure about the h
#if r > (units.Mpc)*cat.Lbox/10:
try:
int_xi+=du*bias2*(np.power(10, \
xi_mm_interp(np.log10(r.value))))
except ValueError:
int_xi+=du*0
#else:
#int_xi+=du*0#(np.power(10, \
#xi_interp(np.log10(r.value))))
wt_large[bin_no] = int_xi.to("Mpc").value/cat.h
def integrate_xi_small(bin_no):#, w_theta, bin_no, ubc, ubins)
int_xi = 0
t_med = np.radians(tpoints[bin_no])
for ubin_no, _u in enumerate(ubc):
_du = ubins[ubin_no+1]-ubins[ubin_no]
u = _u*units.Mpc*cat.a/cat.h
du = _du*units.Mpc*cat.a/cat.h
r = np.sqrt((u**2+(x*t_med)**2))#*cat.h#not sure about the h
#if r > (units.Mpc)*cat.Lbox/10:
#int_xi+=du*large_scale_model(r.value)
#else:
try:
int_xi+=du*(np.power(10, \
xi_interp(np.log10(r.value))))
except ValueError:
try:
int_xi+=du*bias2*(np.power(10, \
xi_mm_interp(np.log10(r.value))))
except ValueError:
int_xi+=0*du
wt_small[bin_no] = int_xi.to("Mpc").value/cat.h
#Currently this doesn't work cuz you can't pickle the integrate_xi function.
#I'll just ignore for now. This is why i'm making an emulator anyway
#p = Pool(n_cores)
map(integrate_xi, range(tpoints.shape[0]));
map(integrate_xi_small, range(tpoints.shape[0]));
In [ ]:
#wt_large[wt_large<1e-10] = 0
wt_small[wt_small<1e-10] = 0
In [ ]:
wt_large
In [ ]:
plt.plot(tpoints, wt, label = 'My Calculation')
plt.plot(tpoints_rm, wt_redmagic, label = 'Buzzard Mock')
#plt.plot(tpoints, W*wt_large, label = 'LS')
plt.plot(tpoints, W*wt_small, label = "My Calculation")
#plt.plot(tpoints, wt+W*wt_large, label = "both")
#plt.plot(tpoints_rm, W.to("1/Mpc").value*mathematica_calc, label = 'Mathematica Calc')
#plt.plot(tpoints, wt_analytic(m,10**b, np.radians(tpoints), x),label = 'Mathematica Calc' )
plt.ylabel(r'$w(\theta)$')
plt.xlabel(r'$\theta \mathrm{[degrees]}$')
plt.loglog();
plt.legend(loc='best')
In [ ]:
wt/wt_redmagic
In [ ]:
wt_redmagic/(W.to("1/Mpc").value*mathematica_calc)
In [ ]:
import cPickle as pickle
with open('/u/ki/jderose/ki23/bigbrother-addgals/bbout/buzzard-flock/buzzard-0/buzzard0_lb1050_xigg_ministry.pkl') as f:
xi_rm = pickle.load(f)
In [ ]:
xi_rm.metrics[0].xi.shape
In [ ]:
xi_rm.metrics[0].mbins
In [ ]:
xi_rm.metrics[0].cbins
In [ ]:
#plt.plot(np.log10(rpoints), b2+(np.log10(rpoints)*m2))
#plt.plot(np.log10(rpoints), 90+(np.log10(rpoints)*(-2)))
plt.scatter(rpoints, xi)
for i in xrange(3):
for j in xrange(3):
plt.plot(xi_rm.metrics[0].rbins[:-1], xi_rm.metrics[0].xi[:,i,j,0])
plt.loglog();
In [ ]:
plt.subplot(211)
plt.plot(tpoints_rm, wt_redmagic/wt)
plt.xscale('log')
#plt.ylim([0,10])
plt.subplot(212)
plt.plot(tpoints_rm, wt_redmagic/wt)
plt.xscale('log')
plt.ylim([2.0,4])
In [ ]:
xi_rm.metrics[0].xi.shape
In [ ]:
xi_rm.metrics[0].rbins #Mpc/h
The below cell calculates the integrals jointly instead of separately. It doesn't change the results significantly, but is quite slow. I've disabled it for that reason.
In [ ]:
x = cat.cosmology.comoving_distance(z)*a
#ubins = np.linspace(10**-6, 10**2.0, 1001)
ubins = np.logspace(-6, 2.0, 51)
ubc = (ubins[1:]+ubins[:-1])/2.0
#NLL
def liklihood(params, wt_redmagic,x, tpoints):
#print _params
#prior = np.array([ PRIORS[pname][0] < v < PRIORS[pname][1] for v,pname in zip(_params, param_names)])
#print param_names
#print prior
#if not np.all(prior):
# return 1e9
#params = {p:v for p,v in zip(param_names, _params)}
#cat.populate(params)
#nd_cat = cat.calc_analytic_nd(parmas)
#wt = np.zeros_like(tpoints_rm[:-5])
#xi = cat.calc_xi(r_bins, do_jackknife=False)
#m,b,_,_,_ = linregress(np.log10(rpoints), np.log10(xi))
#if np.any(xi < 0):
# return 1e9
#kernel = ExpSquaredKernel(0.05)
#gp = george.GP(kernel)
#gp.compute(np.log10(rpoints))
#for bin_no, t_med in enumerate(np.radians(tpoints_rm[:-5])):
# int_xi = 0
# for ubin_no, _u in enumerate(ubc):
# _du = ubins[ubin_no+1]-ubins[ubin_no]
# u = _u*unit.Mpc*a
# du = _du*unit.Mpc*a
#print np.sqrt(u**2+(x*t_med)**2)
# r = np.sqrt((u**2+(x*t_med)**2))#*cat.h#not sure about the h
#if r > unit.Mpc*10**1.7: #ignore large scales. In the full implementation this will be a transition to a bias model.
# int_xi+=du*0
#else:
# the GP predicts in log, so i predict in log and re-exponate
# int_xi+=du*(np.power(10, \
# gp.predict(np.log10(xi), np.log10(r.value), mean_only=True)[0]))
# int_xi+=du*(10**b)*(r.to("Mpc").value**m)
#print (((int_xi*W))/wt_redmagic[0]).to("m/m")
#break
# wt[bin_no] = int_xi*W.to("1/Mpc")
wt = wt_analytic(params[0],params[1], tpoints, x.to("Mpc").value)
chi2 = np.sum(((wt - wt_redmagic[:-5])**2)/(1e-3*wt_redmagic[:-5]) )
#chi2=0
#print nd_cat
#print wt
#chi2+= ((nd_cat-nd_mock.value)**2)/(1e-6)
#mf = cat.calc_mf()
#HOD = cat.calc_hod()
#mass_bin_range = (9,16)
#mass_bin_size = 0.01
#mass_bins = np.logspace(mass_bin_range[0], mass_bin_range[1], int( (mass_bin_range[1]-mass_bin_range[0])/mass_bin_size )+1 )
#mean_host_mass = np.sum([mass_bin_size*mf[i]*HOD[i]*(mass_bins[i]+mass_bins[i+1])/2 for i in xrange(len(mass_bins)-1)])/\
# np.sum([mass_bin_size*mf[i]*HOD[i] for i in xrange(len(mass_bins)-1)])
#chi2+=((13.35-np.log10(mean_host_mass))**2)/(0.2)
print chi2
return chi2 #nll
In [ ]:
print nd_mock
print wt_redmagic[:-5]
In [ ]:
import scipy.optimize as op
In [ ]:
results = op.minimize(liklihood, np.array([-2.2, 10**1.7]),(wt_redmagic,x, tpoints_rm[:-5]))
In [ ]:
results
In [ ]:
#plt.plot(tpoints_rm, wt, label = 'My Calculation')
plt.plot(tpoints_rm, wt_redmagic, label = 'Buzzard Mock')
plt.plot(tpoints_rm, wt_analytic(-1.88359, 2.22353827e+03,tpoints_rm, x.to("Mpc").value), label = 'Mathematica Calc')
plt.ylabel(r'$w(\theta)$')
plt.xlabel(r'$\theta \mathrm{[degrees]}$')
plt.loglog();
plt.legend(loc='best')
In [ ]:
plt.plot(np.log10(rpoints), np.log10(2.22353827e+03)+(np.log10(rpoints)*(-1.88)))
plt.scatter(np.log10(rpoints), np.log10(xi) )
In [ ]:
np.array([v for v in params.values()])
In [ ]: